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THE ROCKET EQUATION 
 
 
A rocket requires a great amount of fuel to power its journey into space. 
However, of course that fuel has mass, and so more fuel is then needed to 
provide power to overcome the mass of the original fuel, and so on. A fine 
balance is needed between the mass of the rocket and the mass of the fuel.  
 
The ‘Rocket Equation’ allows us to find that balance and to calculate how 
much fuel is needed to get a certain mass rocket into orbit.  
 
A rocket’s journey into space is a continuous process of it ejecting fuel to 
provide it with power. We can derive the ‘Rocket Equation’ by considering 
that process and momentum before and after an instance of fuel ejection. 
 
 
Deriving the Rocket Equation 
 
 
 
Before fuel ejection 
 
 
 
 
 
 
Above is a rocket with some small amount of fuel onboard (represented by 
the circle). The rocket (with the fuel) has mass 𝑚 and velocity 𝑣.  
 
Momentum can be found by multiplying mass by velocity. 
 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚	𝑜𝑓	𝑟𝑜𝑐𝑘𝑒𝑡	𝑤𝑖𝑡ℎ	𝑓𝑢𝑒𝑙 = 	𝑚𝑣 
 
 
After fuel ejection 
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Now this image above shows the situation once the rocket has ejected the 
fuel. The fuel has mass ∆𝑚 and the rocket has mass 𝑚 −	∆𝑚.  
 
The velocity of the fuel is 𝑣 − 𝑣4 (that is, the speed it was originally moving at, 
minus the speed it was ejected with). We can assume 𝑣4 is constant 
regardless of the mass of the fuel being ejected or the position in the rocket’s 
journey. 
 
And the velocity of the rocket has increased to 𝑣 +	∆𝑣.  
  
The momentum is the sum of the momentum of the fuel and the momentum 
of the rocket.  
 

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚	𝑎𝑓𝑡𝑒𝑟	𝑓𝑢𝑒𝑙	𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 = 	 𝑚 − ∆𝑚 𝑣 + ∆𝑣 +	∆𝑚(𝑣 −	𝑣4)	 
 
 
The law of the conservation of momentum tells us that the momentum of a 
system remains constant, therefore:  
 

𝑚𝑣 =	 𝑚 − ∆𝑚 𝑣 + ∆𝑣 +	∆𝑚 𝑣 −	𝑣4  
 
Expanding the brackets gives:  
 

𝑚𝑣 = 	𝑚𝑣 − ∆𝑚𝑣 +𝑚∆𝑣 − ∆𝑚∆𝑣 +	∆𝑚𝑣 − ∆𝑚𝑣4	 
 
This simplifies to: 

0 = 𝑚∆𝑣 − ∆𝑚∆𝑣 − ∆𝑚𝑣4 
  
∆𝑚∆𝑣 is a small change in mass multiplied by a small change in velocity, 
which will give a result so tiny that we can ignore this term without losing 
much accuracy.  
 

𝑚∆𝑣 = 	∆𝑚𝑣4 
 
 
We can re-arrange as follows:  
 

∆𝑣 = 	𝑣4
1
𝑚∆𝑚 

 
This relationship only applies over a small change in mass (∆𝑚) of the rocket. 
We’re interested in finding a relationship that applies for the whole journey.  
 
To do this we can integrate both sides of the equation over the whole journey 
of the rocket from launch to when it is finally in orbit. This means integrating  
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between intial velocity and final velocity and between initial mass and final 
mass.  
 
By convention both 𝑑𝑚 and 𝑑𝑣 should signify increases in the mass and 
velocity, and therefore we need to change the sign of 𝑑𝑚 below. 
 
 

𝑑𝑣
=>

=?@A
= −𝑣4

1
𝑚

B>

B?

	𝑑𝑚 

 
𝑣=?@A

=> = −𝑣4	 ln	(𝑚)B?

B>  
 

𝑣=?@A
=> = −𝑣4	 ln	(𝑚)B?

B>  
 

𝑣E = −𝑣4 ln 𝑚E − ln	(𝑚A)  
 
 
By using log laws: 
 

𝑣E = −𝑣4 ln
𝑚E

𝑚A
 

 
And raising both sides as powers to the base e:  
 

𝑚E

𝑚A
= 𝑒F

=>
=G  

 
 
This is the ‘Rocket Equation’!  
 
 
 
Using the Rocket Equation 
 
As we can see above the Rocket Equation gives us a relationship between 
the mass of the rocket when it is finally in orbit without all its fuel (𝑚E), the 
mass of the rocket initially with all its fuel on board (𝑚A) and the final velocity 
(𝑣E) the rocket needs to achieve in order to stay in orbit.  
 
Any shuttles trying to dock on to the International Space Station would need 
to be orbiting around the Earth at the same speed as the ISS which is around  
𝑣E = 8000𝑚𝑠FJ, and we can assume the speed the fuel is ejected with is 𝑣4 =
3500𝑚𝑠FJ.  
 
We can substitute these two values into the equation above:  
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𝑚E

𝑚A
= 𝑒F

MAAA
NOAA 

 
 
 

𝑚E

𝑚A
≈ 0.102 

 
We’ve found that the ratio between the mass of the rocket with its fuel and 
the mass of the rocket without fuel is around 0.102  
 
This tells us how much fuel we need to get a rocket of any mass into orbit 
around the Earth! 
 
 
 
Bonus activity  
 
The Saturn V shuttle had a payload mass (mass without fuel) of 140,000kg.  
 
Can you use the formula above to work out what mass of fuel was needed to 
take it into orbit at 8000𝑚𝑠FJ?  
 
 
 
The velocity needed to escape the gravitational pull of the Earth (escape 
velocity) is about 11,190𝑚𝑠FJ - far greater than the velocity needed to orbit 
the Earth.  
 
Can you calculate how much extra fuel is required to get the shuttle (the 
same payload) to escape velocity? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


